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Abstract. Asymptoticexpansions arederived for Bessel functions starting from the differential- 
difference equations they satisfy. These are just the well known Green-Liouville expansions 
obtainable from either the pure differential or pure difference equations satisfied by Bessel 
functions. The Bessel functions are considered because of their well known properties but 
the method described should be applicable to many more general situations. 

1. Introduction 

The Bessel functions Jn(x)  and Y,(x) satisfy the differential equation 

where the order n is a parameter of the equation. These functions also satisfy the dif- 
ference equation 

where x is now a parameter of the equation. Both of these equations may be used to 
investigate the properties of Bessel functions and indeed identical expansions may be 
derived from (1) or ( 2 )  using WKB methods (Dingle and Morgan 1967a,b). 

In addition to these ‘pure’ equations the Bessel functions satisfy ‘mixed’ equations, 
in particular, 

(3b) 
a 

2 z f n ( x )  = fn - 1 (x) -f + I (x) 

which are partial differential-difference equations. We will be concerned with deriving 
well known expansions from (3a) (type A) and (3b) (type B). 

The reason for this work is that partial differential-difference equations can exist 
without any (known) corresponding differential or difference equation. An example is 
the Raman-Nath equation (Berry 1966) for the amplitude of the nth diffracted beam when 
light is scattered by ultrasonic sound : 

An additional general example is the occupation number of a quantum level as a function 
of time when transitions are occurring to and from neighbouring quantum levels. 
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In contrast to the formal theory of differential-difference equations (Bellmann and 
Cooke 1963) we have adopted a rather empirical approach. The Bessel functions are 
well known and thoroughly investigated functions of mathematical physics and pro- 
vide an excellent example for establishing the procedures necessary to obtain solutions 
of the WKB type. It is difficult to judge the general applicability of this work. Other 
standard functions such as the Hermite polynomials can be dealt with along the same 
lines but problems do arise, for example, with the identification of particular solutions 
to equation (4). 

In Q 2 we show how to obtain the first two terms in the Green-Liouville expansion 
for type A while Q 3 is concerned with type B. In 9 4 we discuss the applicability of the 
methods to equation (4) and general points concerning extension of this work. 

2. TypeA 

It is natural to look for a solution to (3a)  in the form 

f 2 X )  = ~ X P  ZAX) ( 5 )  

following the principles of the WKB method for differential or difference equations. 
Assuming that Z,(x)  is regular and defined for complex n we may write? 

a 1 a 2  1 a 3  

an 2! an 3! an3 
Z , - , ( X )  = Z n ( x ) - - Z n ( x ) + -  7 Z n ( X ) - -  -z ( x ) .  . . 

and we know that when applying the WKB method to equation (2) derivatives of Z,(x)  
other than the first are assumed small in the lowest-order approximation. Correspond- 
ingly we drop azZ,,(x)/8n2 and so on, to obtain the approximate equation, 

a non-linear partial differential equation in the variables n and x .  

2.1. First-order approximation 

To solve ( 7 )  we will use Charpit's method (Piaggio 1958 p 162). We write 

az az 
PE--, 4 ' -  ax an 

so that (7) is equivalent to 
n 

F(p, q, n, x ,  Z )  p-e-q+- = 0. 
X 

The system of differential equations corresponding to (7) is simply : 

dP dq dZ dx dn 
-1 -e-4 -p-qe-q - n / x 2  - l / x '  

=--- - -=-- 

I 11 111 IV V 

(9) 

t In a particular physical problem n may be confined to integer values. The assumption that M x )  is defined 
for general values of n yields sensible results for pure difference equations (Dingle and Morgan 1967a, b) and 
so we follow the same procedure here. 
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Taking I with V we have dx/x = -dq or 

az 
- q = - l n x + C , .  
a n  

We can now eliminate q from (8) to give 

n 
ax X 

- - p = - - + x e - C l  
az _ _  

These two equations for p and q may now be integrated to find the complete integral, 
namely 

X 2  

2 Z,(x) = -nlnx+-e-C1+q51(n) 

and 

Z,(x) = - n In x + Cln + c$~(x). 

For (12) and (13) to be compatible we must choose 

(14) 
X2 

2 cbl(n) = Cln+C2,  42(x) = -e-'' +c2, 

where C2 is a second constant of integration. The complete integral is therefore 

(15) 
X2 

Z,(x) = -n  In x+- 2 + C,n + C2,  

We must now check whether there are singular solutions. This may be done by 
eliminating Cl  or C2 from the equations 

In our case this gives 

0 = 1  (1 7b) 
and (17b) indicates the absence of singular solutions. 

The general integral is 

X 2  
Z,(x) = -n lnx+-ee-C1+Cln+4(Cl)  

2 

where 4 is an arbitrary function of C1 and C ,  = C,(n, x) is determined from 

Any function 4 may be chosen and the resulting Z,(x) will satisfy (7) as may be verified 
by direct substitution. 

Our task is now to find a subsidiary condition which will pick out the solutions which 
correspond to the Bessel functions. For simplicity we will consider the case when n is 
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an integer and we will show that the condition 

L(x) = ( - 1Yf- A X )  

performs this role?. Equation (20) is equivalent to the statement 

From 
Z,(x) = Z-,,(x)+ina. 

-- azn(x) az -Ax) -- azn(x) az - A X )  + in, -- -- 
ax ax an an 

we obtain, with the use of (19), 

n n 
(234  

- lnx+C: = lnx-C;+in.  (23b) 

--+x e-Ci' = -+x e-Ci 
X X 

Here C: 
(23a) and (23b) it is easily shown that 

C,( +n, x )  and C; C( -n, x).  Eliminating C- with the aid of equations 

The function 

whence 

4 may now be determined by noting that 

4(Cl) = -+eC'. 

Substitution for C1 and 4 in (18) now readily gives the solutions 

which is the familiar form for the first-order WKB approximation to the Bessel functions 
(Dingle and Morgan 1967a). 

2.2. Second-order approximation 

Equation (3a) is equivalent to 

If we denote the solution of (7) by Z;(x) and write 

Z,(X) = Z f ( X )  + Z,f(x)  + Z,Z(x) . . . 
then the equation for Z,'(x) is defined as 

where we have dropped all derivatives of Z 2 , Z 3  and so on, higher derivatives than 
t Note that the same condition applies to the Raman-Nath equation (Berry 1966). 
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a2Z0/an2 and higher powers of this quantity, and higher powers and derivatives of 
az '/an. 

Now writing aZ'/ax p and az'/an = q we have to solve the equation 

1 a2zo 

2 a n  
pexp - + q - - 2  = 0 

which is defined to be an equation of Lagrange's form (Piaggio 1958, p 147). We now 
seek two independent integrals of the subsidiary equations, 

dZ1 - dn = - -  dx 
exp(azO/an) 1 4 a2zo/an2 ' 

1 I1 111 

Combining I with I1 we have 

- = - T  
dx x 

where explicit use has been made of equation (26). Progress is now complicated by the 
need to solve (32) which we do by using Charpit's method?. 

We denote dn/dx by t so that (32) is equivalent to 

The subsidiary equations for (33) are 

dx dn -xd t  
-1  - t  t 
- = -  =- 

and using I and I11 together, 

dx dt 
x t '  

t = C,X. 

- = -  

or 

Substitution back into (32) yields an equation for n in terms of x 

C1x--f - - 1  = 0. 
X 1":. 1 1'2 

Care must be taken in squaring this equation. If we do square (37) then 
C1X2 1 

n = -  +- 2 2c1 

( 34) 

(35) 

(36) 

(37) 

but on resubstitution into (37) this does not appear to be a solution for the positive sign. 
This dilemma is resolved by writing (37) as 

X 

X 

( 3 9 4  

t This equation may also be solved by the substitution n = U X .  
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We also note that 

Consider now the case when n2/x2 > 1 and when the sign in (39a) is positive. The solu- 
tion (38) is valid provided C1 < 0 and C1 < - l/x as may be ascertained by sub- 
stitution. 

We will follow through this particular situation and show that these constraints 
on C,  resolve a difficulty with the sign at a later stage. Returning to I1 and I11 in (31) we 
have, choosing the positive sign in (26), 

dn 
2(n2 - x ~ ) ' ' ~  

= dZ'  (n2 > x2) 

or substituting for x2 in terms of n and C ,  from (38) we have 

dn dn 
1/2 = d Z ' =  

2(n2+C;2-2C; n) 2[(n - C; ')2] 'I2 

and the dilemma arises as to whether the denominator of (42) should be written as 
(n - C; I )  or (C; - n). This is resolved by noting that 

(C;'-n)= -n+x  [ z  -+ (z:  -- 1) "I = +(nz-x2)1/2 

which is positive as it should be. We can now integrate 

dn 
2(C;'-n) 

dZ'  = 

to obtain 

Z' = -+I~(c; ' -~)+c, 

(43) 

(45) 

or substituting for C1 we have the complete integral 

(46) Z' = -- h ( n 2  - x2) + C2. 

This, in fact, is easily shown to be valid if we choose the other sign in (394. The general 
integral is simply 

where a,(n, x) is determined by 

4 being an arbitrary function. Alternatively we may write 

where $ is an arbitrary function. 
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Since Zo satisfied the condition (21), we must have 

Substitution from (49) quickly shows that this is only possible if $ is a constant independent 
of a, .  Hence 

exp(Z,'(x)) = (n2 - x2)- (51) 

and this is the standard second-order correction for Bessel functions. 

3. TypeB 

The procedure follows that of 9 2 but we consider this problem in detail because dif- 
ferences occur in determining the arbitrary functions. 

We again make the substitution (5) and proceding in the same way as before we have 
to solve the approximate equation 

It is completely straightforward to find the general integral using Charpit's method. 
The general integral is 

Z,(x) = -xsinh C,+C,n+4(C,)  (53) 
where C,(n, x) is determined by 

W C , )  0 = -xcoshC,+n+- ac, (54) 

4 being an arbitrary function. We again find no singular integrals. 
Before considering the function +(Cl) which corresponds to the Bessel functions, 

it should be noted that if we have a solution to (3b) then we may generate other solutions 
simply by letting any operator, which commutes with a/ax or act on the particular 
solution. This is because x and n do not occur explicitly in equation (3b). 

We will first apply equations (21) and (22) which give the following constraints on C ,  
and 4:  

C,(n,x) = -Cl(-n,x)+in,  $(Cl) = 4(-C,+in). (55 )  

Thus in contrast to the situation with type A, we are unable to uniquely define 4 by the 
condition (20). However (55) does imply that 

&Cl)  = F(sinh C,) (56) 

since sinh ( C , )  = sinh ( -  C ,  +in) and we may write 

n 
x-dF(sinh C,)/a sinh C,' cosh C, = (57) 

The function F(sinh C,) which generates the Bessel functions is F = constant as may be 
readily verified but there are an infinity of other solutions satisfying equation (52). 
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A specific example is the choice F = a sinh CI where a is a constant. This generates the 
solutions J,(x - a) and Y,(x -a). It is natural to look for a further condition relating the 
behaviour at x to that at -x. 

From the symmetry properties of equation (36) we may find solutions which satisfy 

then this imposes the additional constraints : 

C,(n,x) = C,(n, -x)+iz,  &C,)  = d4Cl -in). (60) 

Hence F(sinh C , )  is limited to be an even function of sinh C , .  
If we take the negative sign in (58) then we find &Cl) must satisfy 

&C,) = $(C,-iz)+ix. (61) 

This is incompatible with (55) and (60) but compatible with the alternative subsidiary 
conditionf,(x) = - (-  l)"f-,(x) providing we choose 

&Cl) = C ,  +F(sinh C , ) .  (62) 

It appears that a symmetry condition is not sufficient to identify the Bessel functions 
uniquely. For the moment we will simply take F(sinh C , )  = constant and proceed to the 
second approximation. The equation analogous to (29) is simply 

or putting in the explicit form for Z,O(x) 

az,'(x) azyx)  1 
x-+n- +- = 0. ax an 2 

This equation may easily be integrated to give the general integral 

where II/ is an arbitrary function. If we consider the symmetry properties of (64) then 
we may insist on solutions satisfying 

ZAx) = Z - n(X) 3 Z"(X) = Z"( - x). (66) 

These conditions only restrict IC/ to be an even function of n/x. The Bessel functions 
correspond to choosing 

* -  (:) = - -  :In($--1). 

The unsatisfactory feature about type B equations is that the required arbitrary 
functions have not been deduced from first principles. This difficulty will now be 
discussed in 0 4. 
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4. Other types of equation and boundary conditions 

The origin of the logical difficulty encountered with identifying arbitrary functions for 
type B equations may be identified by considering a particular physical problem where a 
differentialdifference equation occurs. The Raman-Nath equation (4) is ideal for this 
purpose since this equation reduces to the Bessel equation when the parameter p is 
small. The boundary condition (Berry 1966) 

h(0) = 6n ,0  (68) 

is also satisfied by the Bessel function J , (x )  and in fact a boundary condition of this type 
must be introduced to  uniquely identify the solution to a type B equation. Differentiation 
of the Raman-Nath equation gives 

so that all the derivatives of fJx) at x = 0 are fixed by the condition (68). In particular 
if we consider the case when n = r then from (69) we find that for n 2 0 

This behaviour near x = 0 may be obtained if 

for small x. 
The boundary condition at x = 0 is inconvenient for determining arbitrary functions 

since the WKB expansion may break down at the boundary. This, for example, is the 
case for the Bessel functions when n = x = 0. The question arises as to whether or not 
a type B equation can be converted to a type A form. 

The Raman-Nath equation may be expressed as 

or 

If we add (724 and (72b) then we simply obtain equation (4) irrespective of the form of the 
unknown function P(n, x). It should be noted that the symmetry condition (20) implies 
P(n, x) = - P( - n, 4. 

The source of the ambiguity in identifying a particular solution to a type B equation 
is now apparent. We may insert any function P ( n , x )  which is odd in the variable n, 
solve either (72a) or (72b) using the condition (20), and the resulting solution will satisfy 
the corresponding type B equation. This does not mean that the boundary condition 
(68) will be satisfied. Only if we choose a unique form for P(n, x) will (68) be satisfied. 
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The problem of defining a particular solution to a type B equation then devolves into 
finding the form of b(n, x ) .  

One may formally solve the Raman-Nath equation or equation (3b) by writing 
( n  2 0) 

where ao(n) = 1. The boundary condition (68) is satisfied by this form and the coefficients 
a,(n) may be determined by equating the coefficients of the separate powers of x to zero, 
after substitution into the type B differential-difference equation. In the case of the 
Bessel equation the general form of a,(n) can easily be discovered and one can then deduce 
the form P(n, x )  = n / x  which will yield the same function f n ( x )  as given by (73). 

This is rather an inelegant procedure and cannot easily be carried through for the 
Raman-Nath equation. In this case the coefficients a,(n) satisfy a more complicated 
recurrence relation and the general form cannot easily be deduced. We may write 

with bo(n) = 1 and deduce the coefficients one at a time, so that, for example, we find 

iP b,(n) = --(41nl- 1). 12 (75) 

The problem of determining P ( n , x )  for the Raman-Nath equation is one which we 
have not been able to solve as yet. However, it should be remarked that the equations 
for the lowest-order approximation may readily be integrated to give the general 
integral 

Zt(x) = C , x +  ~ s i n h - l ( ~ - C , )  dn+4(C,) 

where C ,  = C,(n, x) is to be regarded as a constant in the integration over n and again 4 
is an aribtrary function. The fact that a type B equation requires more subsidiary 
information than a type A equation undoubtedly stems from the fact that type B involves 
a second-order difference operator. 

There is a good deal to be discovered about the properties of differential-difference 
equations. If the difficulty about finding the function b(n, x )  in general, can be resolved 
then an obvious extension of this work would be to develop generalized WKB or uniform 
expansions along the lines described by Dingle and Morgan (1967b). Our main objective 
in this paper has been to show that differential-difference equations may be tackled 
directly and the kind of techniques which may be employed. 
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